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A Note on the Computational Stability of the Two-Step 
Lax-Wendroff Form of the Advection Equation 
JOSEPH P. GERRITY, JR.-National Meteorological Center, National Weather Service, 
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ABSTRACT-It is shown by elementary analysis that the 
two-step Lax-Wendroff method for integrating the ad- 
vection equation is subject to nonlinear computational 

instability. The source of the instability lies in the possi- 
bility of lattice separation in the field of the advecting 
coefficient. 

1. INTRODUCTION 

The use of centered finite-difference approximations for 
the quasi-linear system of equations that governs the 
physical behavior of inviscid quasi-static models of the 
atmosphere is known to possess deficiencies with respect 
to  the stability of the computations. These deficiencies 
have been analyzed by Phillips (1959), Richtmyer (1963) 
and, recently, by Robert et al. (1970). 

In  the paper by Robert et al., a heuristic analysis, 
motivated by some remarks in Richtmyer’s (1963) paper, 
was employed. In  essence, the analysis is based on the 
representation of the high frequency or wave number 
content of a field by its “folded” low frequencies or wave 
number equivalent, modulated by a two grid-interval 
oscillation. If the folded representation of a field is of 
sufficiently low frequency or wave number, then, following 
Richtmyer, one may treat the field as a relative constant 
in the stability analysis of a quasi-linear system of equa- 
tions. The simplest such system is a one space-dimension 
advection equation. 

In  the present note, we apply the analysis method to an 
advection equation formulated using the two-step Lax- 
Wendroff method (Richtmyer and Morton 1967). It is 
known from the work of several researchers (see Houghton 
et al. 1966) that the two-step, Lax-Wendroff method does 
permit the development of nonlinear instability, and that 
the method permits the separation of solutions on alternate 
lattices. For these reasons, the results of the analysis are 
readily anticipated. This presentation is offered to show 
the ‘connection between the “damping scheme” here an- 
alyzed and the ‘(neutral scheme” analyzed in Robert et al. 
(1970). Attention is focused on lattice separation as the 
causative factor for nonlinear instability in centered-dif- 
ference schemes. 

2. ANALYSIS 

Consider the advection equation, 

av av --- at- A-7 ax 
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in which the field, V, is advected by the field, A .  Generally, 
t.he field A will be a function of time, t, and space, x. 
The two-step Lax-Wendroff scheme for ,eq (I) follows: 

Step I 

1 
v7+1=- 2 [ v;l+ 1 + vy- ,] -- ; E) AJn[VJn+*--VFII. (2) 

Step 2:  

The superscripts and subscripts are integer indices indi- 
cating the time and space levels a t  which the parameters 
are evaluated. At and Ax are the time and space 
increments. 

Allowing for the va,riability of A, one may combine 
eq (1) and (2) into a single equation: 

We now assume, following the method of Robert et al. 
(1970), that the field A may be represented by a series of 
elements of the form 

It will be further assumed that the wave number p is 
sufficiently small so that the trigonometric function is 
essentially constant. Thus, we write 

A,”=[A,”+A:efrj]. (6) 

It is to be understood that A: represents the amplitude 
of the high wave number element which is the folded 
counterpart of t h e . 1 0 ~  wave number p .  We shall also 
assume that the temporal variability of A,” is small, and 



therefore introduce 

Aj”=Ao+A,efr’ (7) 

into eq (4). One obtains the equation 

V;”=V;-? [“I [Ao+Alefr’][V;+2- Vj”-J 

2 Ax 

2 Ax 

+ 1 FJ [Ai - A:] [ V;L, - 2V;” + V;- ,I. (8) 

A stability analysis of eq (8) may be performed by first 
noting that only even or only odd values of the index, j ,  
appear in the equation. We shall consider j even and look 
for solutions of the form 

(9) 

and { is a complex constant. We must note that the ne- 
glect of the trigonometric dependence of A [eq ( 5 )  and 
(S)] implies that our analysis is valid only for sufficiently 
large values of kAx in eq (10). Note that the wave number 
for which kAx has its maximum value corresponds to a 
4Ax wavelength component of v. 

Upon substitution of eq (9) into eq (8), one obtains the 
following relation to be satisfied by 5:  

I {‘I2= 1 +42 sin’ kAx[2r(l+r)] 
+42 sin4 kAx[2( 1 -?)2- (1 + Y ) ~ ]  (11) 

in which we have used the definitions 

If the solution [eq (9)] is to remain bounded as n increases, 
it is necessary that 

Itl<l. (13) 

If eq (13) holds, then one also has 

I r2I2< 1 . (14) 

Thus, a necessary condition for stability is 

Now when A1=O, r=O, and eq (15) yields the “linear” 
sta,bility criterion, 

AoAt -<l. 
Ax 

On the contrary, if A,#O, then eq (15) must be satisfied 
In  particular, eq (15) indicates that it is necessary for 

or 
(&<f sin2 kAx 

AI<&[ sin’ kAx 1. 
1 +cos2 kAx 

If eq (17b) is not satisfied, then the solution will be un- 
stable, no matter how small A t  is made. Consequently, 
violation of eq (17b) will lead to what has been called 
‘‘nonlinear” instability. From eq (17b) and our interpre- 
tation of A. and AI, it follows that the cause of the insta- 
bility is the excessive degree of lattice separation. 

3. CONCLUDING REMARKS 

It seems clear that  failure to  control the lattice separa- 
ability of centered-difference approximations of the quasi- 
linear meteorological equations is the essential cause of 
nonlinear instability. This point was made by Phillips 
(1959) but was obscured, a t  least in the mind of the writer, 
by Phillips’ suggestion that aliased nonlinear interactions 
were the culprits. 

Since lattice separation is not caused solely by nonlinear 
interactions but also by faulty boundary condition formu- 
lation or by highly variable forcing terms (orographic or 
diabatic), i t  is perhaps easier to understand the problem 
if one centers attention on the linear lattice structure of the 
numerical solutions. The presence of the nonlinear terms 
in the system of equations seems to require that solutions 
on different linear lattices be used in estimating these 
terms. Should the solutions on the other lattices differ 
appreciably, the problem analyzed in this paper will be a 
source of computational difficulty. 

Finally, it should be noted that when nonlinear instabil- 
ity of the type analyzed here is encountered, one is hard 
pressed to justify continuation of the calculation from the 
viewpoint of weather prediction accuracy. In  essence, the 
problem only arises when two, or more, large-scale 
numerical solutions that are uniquely defined on separate 
but equal lattices and with equal claim to legitimacy are 
nonetheless significantly different. 
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